## Calciphylaxis/ Calcific uremic arteriolopathy (CUA)

Marco GELSOMINO<sup>12</sup>, Claude LAE<sup>13</sup>, Michel PELLEGRINI<sup>1</sup>, Jean Yves BERNEY<sup>1</sup>, Rodrigue PIGNEL<sup>1</sup> <sup>1</sup>Geneva University Hospitals (Switzerland)

<sup>2</sup>Hyperbaric centre, Basel (Switzerland)

<sup>3</sup>Centre Hospitalier Alpes-Leman (France)

### Background:

#### Incidence:

Calciphylaxis or calcific uremic arteriolopathy (CUA), is a rare and serious syndrome of systemic arterioles calcification, thrombosis and subcutaneous skin necrosis (1,2). It is most commonly seen in end-stage renal disease (but it can occur in the absence of renal failure) (3). In the dialysis population the prevalence is estimated to 4.1% (4). It is more commonly seen in women and in those with diabetes and obesity, but some studies have also suggested other risks factors such as increased phosphorus concentration, medications (including warfarin, calcium-based binders and vitamin D analogues, and systemic glucocorticoids), hypercoagulable states (protein C and S deficiency and antiphospholipid syndrome) and Hypoalbuminemia (5,6,7).

### **Clinical manifestations:**

CUA manifestations are described as areas of extreme pain and ischemic necrosis, usually on abdomen, buttock, and thigh. The lesions include violaceous, painful, nodules or indurated plaques that can rapidly evolve in necrotic ulcers, with eschars that often become superinfected (8). Usually a skin biopsy is made to help confirm the diagnosis. Laboratory abnormalities may be observed such as elevated levels of parathyroid hormone (PTH), phosphorous, calcium, and the calcium-phosphorous (Ca x P) product (9).

#### Treatment:

The optimal treatment of CUA is not known. A multi-interventional strategy is probably more effective than any single therapy (10).

A good wound care and pain control is recommended. Surgical debridement is controversial, because it can increase the risk of sepsis by removing the protective layer of necrosis, exposing vital tissue to bacteria (11). The control of

Calcium and Phosphate Balance, by diet, noncalcium-containing phosphate binders, such as sevelamer carbonate or lanthanum carbonate, and dialysis are also suggested. Other therapies include normobaric oxygen therapy (10-15L/min by face mask, 2/24h) (10), administration of intravenous sodium thiosulfate three times per week (off label and mechanism not known) (12), treatment of elevated PTH with Cinacalcet other definitive parathyroidectomy.

## Rationale for HBO use

CUA is a syndrome of small vessel calcification of unknown aetiology, that progress in skin non-healing ulcers and gangrene. The mortality is 60-80% due to sepsis from secondary infection of the calciphylaxis wounds (13). As seen in chronic non-healing wounds from other causes, there is a severe hypoxia with reduced transcutaneous oxygen pressure ( $P_{tc}O_2$ ) of 5-20mmHg. With O2 tension below 20mmHg healing is impaired. As shown in previous studies, HBO restores  $P_{tc}O_2$  to physiological normal or supra-normal levels promoting fibroblast proliferation, collagen formation and angiogenesis and could also enhances mobilisation of vasculogenic stem cells.

HBO also helps treating sur-infection of calcphylxis wounds by improving neutrophil function and polymorphonuclear leukocyte-mediated bacterial killing of organisms (14).

In this two ways HBO can help improving/treating CUA lesions.

# Evidence – Based review of HBO use

There is no published randomized controlled clinical trial which include HBO and CUA. Evidence is therefore of low level.

The MEDLINE and RUBICON repository were searched with the query: "Hyperbaric oxygen therapy", "calciphylaxis" and "Calcific uremic arteriolopathy". 28 records were identified. We obtained 14 records after excluding those with no reporting data, commentary or those with abstracts only.

All the studies identified are small case series or uncontrolled retrospective reports and case reports with therefore risk of selection bias.

The first retrospective case series that we found is from Podymow & al. They reviewed five patients with CUA. Photos were taken prior to HBOT and after. Each patient received 25-35 treatment of HBO at 2.5 ATA for 90min. Two

completely healed their necrotic skin ulcers and the other three did not healed, but show some reduction of their lesions.

A more recent study of An & al identified 46 patients with CUA in their institution and from them 34 received HBOT. 58% showed improvement of their wounds, with more than half having complete resolution. It is interesting to note, that those who received HBOT survive on average for more than 3 years.

We found the same results in a study from Melbourne in 2008 by Edsell & al, who reviewed all patients with CUA from 1997 to 2006 in their hospital. 20 patients received HBOT with 55% showing a benefit and 30% experiencing complete resolution of their ulcers. Their HBOT consist of 90min at 2-2.4 ATA for a minimum of 10 to a maximum of 79 sessions.

The other case reports like the retrospective case series showed some benefit of HBOT in the treatment of patients with necrotic ulcers due to CUA, in a multi-interventional approach. Indeed, all patients received dialysis, good wound care and other treatments like those mentioned in the "Introduction".

## **Patients selection for HBO**

Any patient with the diagnosis of CUA.

## **Current protocol**

2-2.5ATA for 90min 20-60 HBO sessions

### **Cost impact**

?

## References

Adrogué HJ, Frazier MR, Zeluff B, Suki WN. Systemic calciphylaxis revisited. Am J Nephrol 1981; 1:177.

Kent RB 3rd, Lyerly RT. Systemic calciphylaxis. South Med J 1994; 87:278. Nigwekar SU, Wolf M, Sterns RH, Hix JK. Calciphylaxis from nonuremic causes: a systematic review. Clin J Am Soc Nephrol 2008; 3:1139. Angelis M, Wong LL, Myers SA, Wong LM. Calciphylaxis in patients on hemodialysis: a prevalence study. Surgery 1997; 122:1083.

Mazhar AR, Johnson RJ, Gillen D, et al. Risk factors and mortality associated with calciphylaxis in end-stage renal disease. Kidney Int 2001; 60:324.

Hayashi M, Takamatsu I, Kanno Y, et al. A case-control study of calciphylaxis in Japanese end-stage renal disease patients. Nephrol Dial Transplant 2012; 27:1580.

Floege J, Kubo Y, Floege A, et al. The Effect of Cinacalcet on Calcific Uremic Arteriolopathy Events in Patients Receiving Hemodialysis: The EVOLVE Trial. Clin J Am Soc Nephrol 2015; 10:800.

Janigan DT, Hirsch DJ, Klassen GA, MacDonald AS. Calcified subcutaneous arterioles with infarcts of the subcutis and skin ("calciphylaxis") in chronic renal failure. Am J Kidney Dis 2000; 35:588.

Fine A, Zacharias J. Calciphylaxis is usually non-ulcerating: risk factors, outcome and therapy. Kidney Int 2002; 61:2210.

Baldwin C, Farah M, Leung M, Taylor P, Werb R, Kiaii M, et al. Multiintervention management of calciphylaxis: a report of 7 cases. Am J Kidney Dis. 2011;58(6):988-91.

Weenig RH, Sewell LD, Davis MD, et al. Calciphylaxis: natural history, risk factor analysis, and outcome. J Am Acad Dermatol 2007; 56:569.

Nigwekar SU, Brunelli SM, Meade D, et al. Sodium thiosulfate therapy for calcific uremic arteriolopathy. Clin J Am Soc Nephrol 2013; 8:1162.

Podymow T, Wherrett C, Burns KD. Hyperbaric oxygen in the treatment of calciphylaxis: a case series. Nephrol Dial Transplant. 2001;16(11):2176-80.

Edsell M, Bailey M, Joe K, Millar I. Hyperbaric oxygen therapy in the treatment of skin ulcers due to calcific uraemic arteriolopathy: experience from an Australian hyperbaric unit. Diving Hyperb Med. 2008;38(2):139-44. An J, Devaney B, Ooi KY, Ford S, Frawley G, Menahem S. Hyperbaric oxygen in the treatment of calciphylaxis: A case series and literature review. Nephrology (Carlton). 2015;20(7):444-50.

Wangen T, Anderson S, Fencl K, Mangan S. Calciphylaxis: an unusual case with an unusual outcome. Am J Nurs. 2014;114(10):24-31; quiz 2, 42.

Deng Y, Xie G, Li C, Zhang H, Yang B, Chen X, et al. Calcific uremic arteriolopathy ameliorated by hyperbaric oxygen therapy in high-altitude area. Ren Fail. 2014;36(7):1139-41.

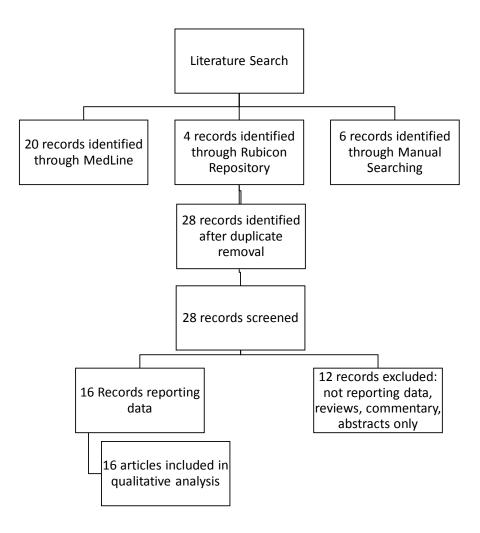
Borges L, Rosa P, Dias E, Cassio I. Successful treatment of calciphylaxis by a multidisciplinary approach. BMJ Case Rep. 2014;2014.

Savoia F, Gaddoni G, Patrizi A, Misciali C, Odorici G, Tampieri G, et al. Calciphylaxis in dialysis patients, a severe disease poorly responding to therapies: report of 4 cases. G Ital Dermatol Venereol. 2013;148(5):531-6.

Malabu UH, Manickam V, Kan G, Doherty SL, Sangla KS. Calcific uremic arteriolopathy on multimodal combination therapy: still unmet goal. Int J Nephrol. 2012;2012:390768.

New N, Mohandas J, John GT, Ratanjee S, Healy H, Francis L, et al. Calcific uremic arteriolopathy in peritoneal dialysis populations. Int J Nephrol. 2011;2011:982854.

Alikadic N, Kovac D, Krasna M, Lindic J, Sabovic M, Tomazic J, et al. Review of calciphylaxis and treatment of a severe case after kidney transplantation with iloprost in combination with hyperbaric oxygen and cultured autologous fibrin-based skin substitutes. Clin Transplant. 2009;23(6):968-74.


Rogers NM, Coates PT. Calcific uraemic arteriolopathy: an update. Curr Opin Nephrol Hypertens. 2008;17(6):629-34.

Arenas MD, Gil MT, Gutierrez MD, Malek T, Moledous A, Salinas A, et al. Management of calcific uremic arteriolopathy (calciphylaxis) with a combination of treatments, including hyperbaric oxygen therapy. Clin Nephrol. 2008;70(3):261-4. Dwyer KM, Francis DM, Hill PA, Murphy BF. Calcific uraemic arteriolopathy: local treatment and hyperbaric oxygen therapy. Nephrol Dial Transplant. 2002;17(6):1148-9.

Basile C, Montanaro A, Masi M, Pati G, De Maio P, Gismondi A. Hyperbaric oxygen therapy for calcific uremic arteriolopathy: a case series. J Nephrol. 2002;15(6):676-80.

### **Conclusion: Recommendation**

We suggest the use of HBOT as part of a multi-interventional approach in the treatment of CUA. (Recommendation level 2, low level of evidence grade C) We recommend to perform randomized studies.



| Study<br>(authors,<br>year) | Туре                         | Nb patients                   | Aim(s) /<br>Evaluation<br>criteria                                                        | Inclusion /<br>Exclusion<br>criteria | HBO protocol<br>(pressure,<br>time, nb of<br>session) | Results                                                      | Conclusion /<br>comment                                                                                                                                        |
|-----------------------------|------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2015 – An et<br>al.         | Retrospective<br>Case Series | 46,<br>HBOT in 34<br>patients | Wound healing<br>under HBO and<br>factors that<br>predict wound<br>healing or<br>survival | Patient with<br>calciphylaxis        | Mean of 44 HBO<br>sessions<br>2-2.4ATA 90min          | 58% improved<br>and more than<br>half of them<br>100% healed | Possible role for<br>HBOT in the<br>treatment of<br>Calciphylaxis/<br>Diabetes only<br>factor<br>associated with<br>improved<br>wound healing<br>and mortality |
| 2014 – Borges<br>et al.     | Case report                  | 1                             | Wound healing                                                                             | Patient with calciphylaxis           | 54 HBO<br>sessions<br>2.4ATA 90min                    | 100% healed                                                  | Support of<br>HBOT as part of<br>a multi-<br>interventional<br>approach                                                                                        |
| 2014 – Wangen<br>et al.     | Case report                  | 1                             | Wound healing                                                                             | Patient with calciphylaxis           | 90 HBO<br>sessions<br>2ATA 90min                      | 100% healed                                                  | Support of<br>HBOT as part of<br>a multi-<br>interventional<br>approach                                                                                        |
| 2014 – Deng et<br>al.       | Case report                  | 1                             | Wound healing                                                                             | Patient with calciphylaxis           | 21 HBO<br>sessions<br>2.5ATA 90min                    | 100% healed                                                  | Favourable<br>adjunctive<br>treatment                                                                                                                          |
| 2013 – Savoia<br>et al.     | Retrospective<br>Case Series | 4,<br>HBOT in 3<br>patients   | Wound healing                                                                             | Patient with calciphylaxis           | Not reported                                          | 75% improved                                                 | Support of<br>HBOT as part of<br>a multi-<br>interventional<br>approach                                                                                        |
| 2012 – Malabu<br>et al.     | Retrospective<br>Case Series | 6,<br>HBOT in 4               | Wound healing                                                                             | Patient with calciphylaxis/          | 2.4ATA 90min                                          | 50% healed                                                   | Support of<br>HBOT as an                                                                                                                                       |

|                           |                              | patients                    |               | excluded<br>nonuremic<br>calciphylaxis         |                                         |                                                    | adjunctive<br>treatment                                                 |
|---------------------------|------------------------------|-----------------------------|---------------|------------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|
| 2011 – New et<br>al.      | Retrospective<br>Case Series | 5,<br>HBOT in 2<br>patients | Wound healing | Patient with calciphylaxis                     | 5-30 HBO<br>sessions                    | 80% healed                                         | Support of<br>HBOT as part of<br>a multi-<br>interventional<br>approach |
| 2011 – Baldwin<br>et al.  | Retrospective<br>Case Series | 7,<br>HBOT in 6<br>patients | Wound healing | Biopsy proven<br>calciphylaxis                 | 10-65 HBO<br>sessions                   | 86% healed                                         | Support of<br>HBOT as part of<br>a multi-<br>interventional<br>approach |
| 2010 – Jean et<br>al.     | Retrospective<br>Case Series | 6,<br>HBOT in 4<br>patients | Wound healing | Patient with calciphylaxis                     | 20-40 HBO<br>sessions                   | 5/6 healed<br>1 died (also<br>treated with<br>HBO) | Support of<br>HBOT as an<br>adjunctive<br>treatment                     |
| 2009 – Alikadic<br>et al. | Case report                  | 1                           | Wound healing | Patient with calciphylaxis                     | 19 HBO<br>sessions<br>2.5ATA 90min      | 100% healed                                        | Support of<br>HBOT as an<br>adjunctive<br>treatment                     |
| 2008 – Arenas<br>et al.   | Case reports                 | 2                           | Wound healing | Patient with calciphylaxis                     | 20-30 HBO<br>sessions                   | 100%<br>improved                                   | Possible role for<br>HBOT in the<br>treatment of<br>Calciphylaxis       |
| 2008 – Rogers<br>et al.   | Retrospective<br>Case Series | 12                          | Wound healing | Patient with calciphylaxis                     | 7-41 HBO<br>sessions<br>2ATA 90min      | 92% healed                                         | Support of<br>HBOT as an<br>adjunctive<br>treatment                     |
| 2008 – Edsell<br>et al.   | Retrospective<br>Case Series | 20                          | Wound healing | Chronic skin<br>ulcers due to<br>calciphylaxis | 17-83 HBO<br>sessions<br>2-2.4ATA 90min | 55% improved<br>30% healed                         | Possible role for<br>HBOT in the<br>treatment of<br>Calciphylaxis       |
| 2002 – Dwyer<br>et al.    | Case Report                  | 1                           | Wound healing | Patient with calciphylaxis                     | 23 HBO<br>sessions<br>2.4ATA 90min      | 100% healed                                        | Favourable<br>adjunctive<br>treatment                                   |

| 2002 – Basile            | Retrospective<br>Case Series | 11 | Wound healing | Patients with calciphylaxis | 20-108 HBO<br>sessions                | 89% improved<br>73% healed | Possible role for<br>HBOT in the<br>treatment of<br>Calciphylaxis |
|--------------------------|------------------------------|----|---------------|-----------------------------|---------------------------------------|----------------------------|-------------------------------------------------------------------|
| 2001 –<br>Podymow et al. | Retrospective<br>Case Series | 5  | Wound healing | Patients with calciphylaxis | 25-35 HBO<br>sessions<br>2.5ATA 90min | 60% improved<br>40%healed  | Possible role for<br>HBOT in the<br>treatment of<br>Calciphylaxis |